Foundational Libraries in Naproche

Marcel Schütz

FAU Erlangen-Nürnberg

7 September 2023

CICM 2023, Cambridge, UK, 4–8 September 2023 EuroProofNet Joint WG4-WG5 meeting, Cambridge, UK, 6–8 September 2023

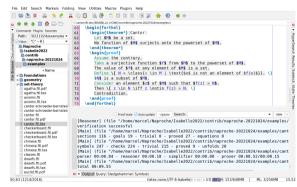
The Naproche System

Naproche = **Na**tural **pro**of **che**cking

- Proof assistant
- Component of Isabelle

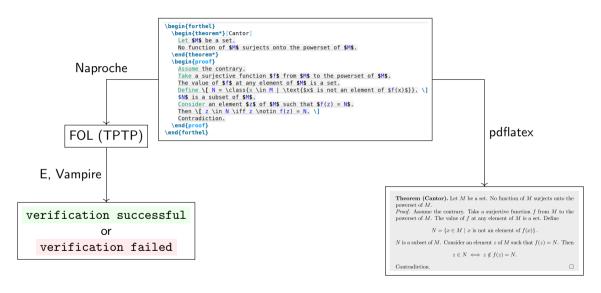
$For The L = \textbf{For} mula \ \textbf{The} ory \ \textbf{L} anguage$

- Naproche's input language
- Controlled natural language
- LATEX-compatible

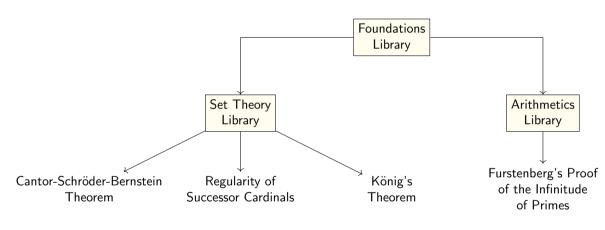


Cantor's Theorem in Isabelle/jEdit

The Naproche System



Libraries in Naproche



Libraries in Naproche

ARITHMETIC 03 3235893452210176

Proposition 3.13. Let n, m, k be natural numbers. Then

$$n + (m + k) = (n + m) + k.$$

Proof. Define $\Phi = \{k' \in \mathbb{N} \mid n + (m + k') = (n + m) + k'\}.$

(1) 0 is contained in Φ . Indeed n + (m+0) = n + m = (n+m) + 0.

(2) For all k' ∈ Φ we have k' + 1 ∈ Φ.

Proof. Let $k' \in \Phi$. Then n + (m + k') = (n + m) + k'. Hence

$$n + (m + (k' + 1))$$

$$= n + ((m + k') + 1)$$

$$= (n + (m + k')) + 1$$

$$= ((n + m) + k') + 1$$

$$= (n + m) + (k' + 1).$$

Thus $k' + 1 \in \Phi$. Qed.

Thus every natural number is an element of Φ . Therefore n + (m + k) = (n + m) + k.

FOUNDATIONS_10_1897613305577472

Axiom 10.29 (Choice). Let X be a system of nonempty sets. Then there exists a map f such that dom(f) = X and $f(x) \in x$ for any $x \in X$.

Foundations: Axiom of choice

SET_THEORY_02_229593678086144

Definition 2.1. An ordinal number is a transitive set α such that every element of α is a transitive set.

Let an ordinal stand for an ordinal number.

SET_THEORY_02_5852994258075648

Definition 2.2. Ord is the class of all ordinals.

Set theory: Definition of ordinal numbers

Arithmetics: Proof by induction

The LATEX Workflow

Libraries are structured as books with a chapter-structure

→ Chapters can be referenced by their file names:

```
set-theory/sections/02_ordinals.ftl.tex
```

 \rightarrow Chapters depend on each other:

```
[readtex foundations/sections/11_binary-relations.ftl.tex]
```

 \rightarrow Definitions, theorems etc. can be referenced by unique IDs:

```
SET_THEORY_02_229593678086144
```

Chapter 2

Ordinal numbers

File: set-theory/sections/02 ordinals.ftl.tex [readtex foundations/sections/11_binary-relations.ftl.tex] [readtex set-theory/sections/01_transitive-classes.ftl.tex] SET THEORY 02 229593678086144 **Definition 2.1.** An ordinal number is a transitive set α such that every element of a is a transitive set. Let an ordinal stand for an ordinal number. SET THEORY 02 5852994258075648 Definition 2.2. Ord is the class of all ordinals. SET THEORY 02 2358097091756032

The LATEX Morkflow

We have $|F[\kappa_i]| \leq |\kappa_i|$ (by proposition 6.10).

Referencing statements from libraries:

 \rightarrow Using the LATEX package xr:

 \usepackage{xr}

 \rightarrow Specifying a library to reference to:

\externaldocument{set-theory/set-theory}

 \rightarrow Using the referencing command \cref{...}:

\cref{SET_THEORY_06_8113916590686208}

\usepackage{xr} \externaldocument{set-theory/set-theory}

We have \$|F[\kappa_i]| \leq |\kappa_i|\$
(bv \cref{SET THEORY 06 8113916590686208}).

. . .

. . .

Referencing a proposition

SET_THEORY_06_8113916590686208

Proposition 6.10. Let x,y be sets and $f:x\to y$ and $a\subseteq x$. Then $|f[a]|\leq |a|$.

6

The Verifying Workflow

Library	Checking time	Definitions/theorems/axioms
Foundations	\sim 10 min.	235
Set Theory	\sim 30 min.	100
Arithmetics	\sim 30 min.	176

ightarrow Checking time does not scale well with the size of a formalization in Naproche

The Verifying Workflow

Naproche rechecks each library whenever it is imported to another formalization.

 $\rightarrow {\sf Annoying} \ \textbf{time} \ \textbf{redundancies}$

The Verifying Workflow

We cannot use different theories in one document.

We cannot use theory morphisms.

We cannot work with instances of theories (i.e. mathematical structures).

→ ForTheL lacks a proper **module system**

2023-09-07

Conclusion & Ideas for Future Work

We have: Both formal and human-readable libraries that integrate well in the LATEX workflow

Current Issues:

Scalability

 \rightarrow Extending the scope of provers that ForTheL texts can be checked with (e.g. Isabelle, Lean, $\dots)$

Time redundancy

ightarrow Persistently storing caching results or proof objects

